Acceleration of particles by intense laser plasma interactions is a promising alternative to conventional particle accelerators. Two groups this week report advances in this field that bring the prospect of monoenergetic ion beams closer. Such beams are necessary for various potential applications including medical proton and heavy-ion therapy. Hegelich et al. produced laser-driven C5+ions with a vastly reduced energy spread compared to previous experiments. And Schwoerer et al. produced quasi-monoenergetic proton beams from intense laser irradiation of solid microstructured targets.
- B. M. Hegelich, B. J. Albright, J. Cobble, K. Flippo, S. Letzring, M. Paffett, H. Ruhl, J. Schreiber, R. K. Schulze and J. C. Fernández, Laser acceleration of quasi-monoenergetic MeV ion beams, Nature, vol. 439, 441(2006).
- H. Schwoerer, S. Pfotenhauer, O. Jackel, K.-U. Amthor, B. Liesfeld, W. Ziegler, R. Sauerbrey, K. W. D. Ledingham and T. Esirkepov, Laser?plasma acceleration of quasi-monoenergetic protons from microstructured targets, Nature, vol. 439, 445(2006).
No comments:
Post a Comment