Showing posts with label x-ray laser. Show all posts
Showing posts with label x-ray laser. Show all posts

Sunday, August 12, 2012

World's most powerful X-ray laser beam refined to scalpel precision

With a thin sliver of diamond, scientists at the U.S. Department of Energy's (DOE) SLAC National Accelerator Laboratory have transformed the Linac Coherent Light Source (LCLS) into an even more precise tool for exploring the nanoworld. The improvements yield laser pulses focused to higher intensity in a much narrower band of X-ray wavelengths, and may enable experiments that have never before been possible.

In a process called "self-seeding," the diamond filters the laser beam to a single X-ray color, which is then amplified. Like trading a hatchet for a scalpel, the advance will give researchers more control in studying and manipulating matter at the atomic level and will deliver sharper images of materials, molecules and chemical reactions. 

 "The more control you have, the finer the details you can see," said Jerry Hastings, a SLAC scientist and co-author on the research, published this week in Nature Photonics. "People have been talking about self-seeding for nearly 15 years. The method we incorporated at SLAC was proposed in 2010 by Gianluca Geloni, Vitali Kocharyan and Evgeni Saldin of the European XFEL and DESY research centers in Germany. When our team from SLAC and Argonne National Laboratory built it, we were surprised by how simple, robust and cost-effective the engineering turned out to be." Hastings added that laboratories around the world are already planning to incorporate this important advance into their own X-ray laser facilities. 

Self-seeding has the potential to produce X-ray pulses with significantly higher intensity than the current LCLS performance. The increased intensity in each pulse could be used to probe deep into complex materials to help answer questions about exotic substances like high-temperature superconductors or intricate electronic states like those found in topological insulators. 



The LCLS’s new self-seeding improvements yield laser pulses focused to higher intensity in a much narrower band of X-ray wavelengths, as you can see in these spectrographs comparing a normal SASE (self-amplified spontaneous emission) pulse (left) and a seeded one (right). The results promise to speed research discoveries and may enable experiments that have never before been possible. Credit: Graph from J. Amman, et al. adapted by Greg Stewart, SLAC National Accelerator Laboratory 

The LCLS generates its laser beam by accelerating bunches of electrons to nearly the speed of light and setting them on a zig-zag path with a series of magnets. This forces the electrons to emit X-rays, which are gathered into laser pulses that are a billion times brighter than any available before, and fast enough to scan samples in quadrillionths of a second. 

Without self-seeding these X-ray laser pulses contain a range of wavelengths (or colors) in an unpredictable pattern, not all of which experimenters can use. Until now, creating a narrower wavelength band at LCLS meant subtracting the unwanted wavelengths, resulting in a substantial loss of intensity.

To create a precise X-ray wavelength band and make the LCLS even more "laser-like," researchers installed a slice of diamond crystal halfway down the 130-meter bank of magnets where the X-rays are generated.

130-meter bank of magnets where the X-rays are generated. Producing the narrower wavelength band is just the beginning. "The resulting pulses could pack up to 10 times more intensity when we finish optimizing the system and add more undulators," said Zhirong Huang, a SLAC accelerator physicist and co-author, who has been a major contributor to the project. LCLS has already begun accepting proposals to use self-seeding for future experiments.

The first tests of the LCLS self-seeding system have generated intense excitement among scientists the world over. Representatives from other X-ray laser facilities, including Swiss FEL, SACLA in Japan and the European XFEL, came to help, and also learn how to implement it at their own sites. According to Paul Emma, a co-author who was a key figure in the original commissioning of the LCLS and in implementing self-seeding, "the entire group of observers was smiling from ear to ear." Emma, now working at Lawrence Berkeley National Lab, has a history of making tough jobs look easy, but he would only say, "I was very happy to see it work." 

Read more at: http://phys.org/news/2012-08-world-powerful-x-ray-laser-refined.html#jCp

Thursday, January 26, 2012

First atomic X-ray laser created

Scientists working at the U.S. Department of Energy's (DOE) SLAC National Accelerator Laboratory have created the shortest, purest X-ray laser pulses ever achieved, fulfilling a 45-year-old prediction and opening the door to a new range of scientific discovery.

This artist's conception illustrates how the new atomic hard X-ray laser is created. A powerful X-ray laser pulse from SLAC National Accelerator Laboratory's Linac Coherent Light Source comes up from the lower-left corner (shown as green) and hits a neon atom (center). This intense incoming light energizes an electron from an inner orbit (or shell) closest to the neon nucleus (center, brown), knocking it totally out of the atom (upper-left, foreground). In some cases, an outer electron will drop down into the vacated inner orbit (orange starburst near the nucleus) and release a short-wavelength, high-energy (i.e., "hard") X-ray photon of a specific wavelength (energy/color) (shown as yellow light heading out from the atom to the upper right along with the larger, green LCLS light). X-rays made in this manner then stimulate other energized neon atoms to do the same, creating a chain-reaction avalanche of pure X-ray laser light amplified by a factor of 200 million. While the LCLS X-ray pulses are brighter and more powerful, the neon atomic hard X-ray laser pulses have one-eighth the duration and a much purer light color. This new laser will enable more precise investigations into ultrafast processes and chemical reactions than had been possible before, ultimately opening the door to new medicines, devices and materials. Credit: Illustration by Gregory M. Stewart, SLAC National Accelerator Laboratory

World's most powerful X-ray laser creates two-million-degree matter

The experiments were carried out at SLAC's Linac Coherent Light Source (LCLS), whose rapid-fire laser pulses are a billion times brighter than those of any X-ray source before it. Scientists used those pulses to flash-heat a tiny piece of aluminum foil, creating what is known as "hot dense matter," and took the temperature of this solid plasma—about 2 million degrees Celsius. The whole process took less than a trillionth of a second.

"The LCLS X-ray laser is a truly remarkable machine," said Sam Vinko, a postdoctoral researcher at Oxford University and the paper's lead author. "Making extremely hot, dense matter is important scientifically if we are ultimately to understand the conditions that exist inside stars and at the center of giant planets within our own solar system and beyond."

Scientists have long been able to create plasma from gases and study it with conventional lasers, said co-author Bob Nagler of SLAC, an LCLS instrument scientist. But no tools were available for doing the same at solid densities that cannot be penetrated by conventional laser beams.

"The LCLS, with its ultra-short wavelengths of X-ray laser light, is the first that can penetrate a dense solid and create a uniform patch of plasma—in this case a cube one-thousandth of a centimeter on a side—and probe it at the same time," Nagler said.

The resulting measurements, he said, will feed back into theories and computer simulations of how hot, dense matter behaves. This could help scientists analyze and recreate the nuclear fusion process that powers the sun.

"Those 60 hours when we first aimed the LCLS at a solid were the most exciting 60 hours of my entire scientific career," said Justin Wark, leader of the Oxford group. "LCLS is really going to revolutionize the field, in my view."

Monday, June 13, 2011

SACLA X-ray free electron laser sets new record

RIKEN and the Japan Synchrotron Radiation Research Institute (JASRI) have successfully produced a beam of X-ray laser light with a wavelength of 1.2 Angstroms, the shortest ever measured. This record-breaking light was created using SACLA, a cutting-edge X-ray Free Electron Laser (XFEL) facility unveiled by RIKEN in February 2011 in Harima, Japan. SACLA (SPring-8 Angstrom Compact free electron LAser) opens a window into the structure of atoms and molecules at a level of detail never seen before.

The use of ultra high-intensity X-ray free electron laser light to explore the miniature structure of matter, until recently inconceivable, is today transforming how we visualize the atomic world.. By providing much shorter wavelengths and higher intensities than other lasers, XFEL enables researchers to directly observe and manipulate objects on an unrivalled scale, opening new research opportunities in fields ranging from medicine and drug discovery to nanotechnology.

One of only two facilities in the world to offer this novel light source, SACLA has the capacity to deliver radiation one billion times brighter and with pulses one thousand times shorter than other existing X-ray sources. In late March, the facility marked its first milestone with beam acceleration to 8GeV and spontaneous X-rays of 0.8 Angstroms.

Only three months later, SACLA has marked a second milestone. On June 7, SACLA successfully increased the density of the electron beam by several hundred times and guided it with a precision of several micrometers to produce a bright X-ray laser with a record-breaking wavelength of only 1.2 Angstroms (a photo energy of 10 keV). The new measurement far exceeds the previous record of 1.5 Angstroms set in 2009 at the only other operational XFEL facility in the world, the Linac Coherent Light Source (LCLS) in the United States.

With experiments soon to commence and user operations at the facility to begin by the end of fiscal 2011, this new record offers a taste of things to come with SACLA's powerfulbeam, the world's most advanced X-ray free electron laser.

Thursday, December 23, 2010

Dutch researchers build affordable alternative to mega-laser X-FEL

Stanford University in the USA has an X-FEL (X-ray Free Electron Laser) with a pricetag of hundreds of millions. It provides images of 'molecules in action', using a kilometer-long electron accelerator. Dutch researchers at Eindhoven University of Technology (TU/e) have developed an alternative that can do many of the same things. However this alternative fits on a tabletop, and costs around half a million euro. That's why the researchers have jokingly called it 'the poor man's X-FEL'.

It's one of the few remaining 'holy grails' of science: a system that allows you to observe the extremely high-speed molecular processes at an atomic scale. You could call it an ultra-fast video microscope. Instead of visible light this kind of system uses X-rays or electrons, because it requires radiation with a wavelength of less than a nanometer. The X-rays or electrons have to be emitted in ultra short pulses, so that the exposure time is extremely short. However these pulses are not easy to generate. An X FEL uses X-ray pulses for this purpose, generated by accelerating electrons in an accelerator of a kilometer, or longer. These electrons are then converted into X-rays. An installation of this kind is very costly, uses large amounts of energy and needs a whole team to operate it. A European X-FEL, which will cost a billion euro, is currently under construction in Hamburg (Germany).

TU/e doctoral candidate ir. Thijs van Oudheusden has developed a machine that in many respects can compete with this billion-euro facility, based on ideas from his co supervisor dr.ir. Jom Luiten. The essence of their 'poor man's X-FEL' is that it uses electrons instead of X-rays. "Why convert electrons into X-rays if you can use the electrons themselves?", asks Van Oudheusden. "As well as that you only need to give the electrons a low energy, so you can accelerate them in just a centimeter. That's why the whole system fits on a tabletop."

The physical barrier that Van Oudheusden had to overcome is that the electrons in electron bunches repel each other. This causes the electron bunches to expand, making them longer than the desired 100 femtoseconds (1 femtosecond is 10-15 second), which in turn would make the 'video microscope' too slow. Jom Luiten thought of a solution to prevent the undesired expansion. The key was to create bunches of exactly the right shape, so they can be controlled and focused by means of electrical fields into bunches of the desired type and length. All with a number of electrons (1 million) that is sufficient to create a diffraction pattern in just a single shot.

Supervisor prof.dr. Marnix van der Wiel believes that half to three-quarters of the kind of research that can be done on an X-FEL can also be done with the 'poor man's X_FEL'. But this doesn't immediately mean that the latter is automatically a lot cheaper in relation to the scientific output that can be generated with it. "The X-FEL at Stanford works non-stop, all year round, and is used by thousands of research groups over several decades. So if you're allocated time on the system you have to take all your equipment to the USA, where you have to stick to a very strict schedule. Our finding is a good alternative for people who want to have the freedom to do research in their own labs. As far as the costs are concerned, it depends on the user if our system will turn out to be cheaper on a per publication basis."

TU/e spin-off AccTec BV intends to build the machine developed by Van Oudheusden and Luiten and to sell it to scientific users. AccTec expects the total price to be below half a million euro.

Thijs van Oudheusden gained his PhD on 13 December with his doctoral thesis entitled 'Electron source for sub-relativistic single-shot femtosecond diffraction'.

Wednesday, November 25, 2009

First Pump-Probe Experiment at Linac Coherent Light Source Completed

(PhysOrg.com) -- The first experiment using the Linac Coherent Light Source to illuminate molecules via a "pump-probe" technique has been completed by an international team of more than 30 scientists from institutions including Lawrence Berkeley National Laboratory, LCLS and the joint SLAC/Stanford PULSE Institute. Ryan Coffee, physicist with the LCLS Laser Group, presented initial results in a seminar at SLAC on Wednesday, November 18.

Pump-probe experiments use one laser pulse, in this case an infrared pulse, to pump energy into a sample and then probe it with another laser pulse, in this case an LCLS X-ray pulse. Such experiments are ideal for looking at atomic and molecular interactions, which take place in tiny fractions of a second. The LCLS probe pulses were as short as a few quadrillionths of a second and a billion times brighter than any X-ray source produced in a laboratory.
Coffee and his colleagues looked at the quantum behavior of electrons in nitrogen molecules, N2. The results represent a step toward a fundamental understanding of how nature converts light into chemical energy and might one day help revolutionize solar power, Coffee said.
Nitrogen atoms distribute their electrons between a lower and a higher energy shell. Using X-rays, the team picked off two electrons from the lower level, allowing a higher shell electron to descend and fill the vacancy. The energy released during this downward plunge ejected another electron from the atom, a phenomenon known as the Auger effect.
The team wanted to study how the nitrogen molecules' orientation affected this reaction. To do this, they used the infrared laser to line up the nitrogen molecules so that they were all facing the same direction.
"In a sense, we tried to make the gas act a little bit like a crystal," Coffee said.
After hitting the nitrogen with X-rays, the researchers detected electrons flying off and measured how the molecules' alignment with respect to the X-rays influenced the Auger effect. They observed numerous features that had strong dependence on the molecules’ direction. The results are currently being prepared for publication.
Future work will focus on how atomic bonds change as molecules either break apart or rearrange. Coffee thinks such work will lead to a deeper understanding of how nature converts light into energy. Ultimately, he hopes the results will lead to technology that will help humans generate power from the sun.
"I'm going for the solar power revolution, though I don't know where it will come from," he said. His gut feeling is that the important atoms to look at are carbon, nitrogen and oxygen.
"That's where energy in nature comes from," he said.
Coffee added that the team owes a debt of gratitude to the LCLS Controls, Accelerator, and Laser Groups, who made the experiment's success possible.

Sunday, August 02, 2009

Transparent aluminium is 'new state of matter'

(PhysOrg.com) -- Oxford scientists have created a transparent form of aluminium by bombarding the metal with the world’s most powerful soft X-ray laser. 'Transparent aluminium' previously only existed in science fiction, featuring in the movie Star Trek IV, but the real material is an exotic new state of matter with implications for planetary science and nuclear fusion.

In this week’s Nature Physics an international team, led by Oxford University scientists, report that a short pulse from the FLASH laser ‘knocked out’ a core electron from every aluminium atom in a sample without disrupting the metal’s crystalline structure. This turned the aluminium nearly invisible to extreme ultraviolet radiation.

''What we have created is a completely new state of matter nobody has seen before,’ said Professor Justin Wark of Oxford University’s Department of Physics, one of the authors of the paper. ‘Transparent aluminium is just the start. The physical properties of the matter we are creating are relevant to the conditions inside large planets, and we also hope that by studying it we can gain a greater understanding of what is going on during the creation of 'miniature stars' created by high-power laser implosions, which may one day allow the power of nuclear fusion to be harnessed here on Earth.’

The discovery was made possible with the development of a new source of radiation that is ten billion times brighter than any synchrotron in the world (such as the UK’s Diamond Light Source). The FLASH laser, based in Hamburg, Germany, produces extremely brief pulses of soft X-ray light, each of which is more powerful than the output of a power plant that provides electricity to a whole city.

The Oxford team, along with their international colleagues, focused all this power down into a spot with a diameter less than a twentieth of the width of a human hair. At such high intensities the aluminium turned transparent.

Whilst the invisible effect lasted for only an extremely brief period - an estimated 40 femtoseconds - it demonstrates that such an exotic state of matter can be created using very high power X-ray sources.

Professor Wark added: ‘What is particularly remarkable about our experiment is that we have turned ordinary aluminium into this exotic new material in a single step by using this very powerful laser. For a brief period the sample looks and behaves in every way like a new form of matter. In certain respects, the way it reacts is as though we had changed every aluminium atom into silicon: it’s almost as surprising as finding that you can turn lead into gold with light!’

The researchers believe that the new approach is an ideal way to create and study such exotic states of matter and will lead to further work relevant to areas as diverse as planetary science, astrophysics and nuclear fusion power.

A report of the research, 'Turning solid aluminium transparent by intense soft X-ray photoionization', is published in Nature Physics. The research was carried out by an international team led by Oxford University scientists Professor Justin Wark, Dr Bob Nagler, Dr Gianluca Gregori, William Murphy, Sam Vinko and Thomas Whitcher.

Friday, May 01, 2009

Big lasers, big science, big questions

Leading optical scientists agree that research and industry stakeholders need to do more if Europe is to maximize the benefits from a planned new generation of high-power laser facilities. That was one of the headline messages from the "Emerging European Laser Facilities: Beyond Petawatt" workshop at the SPIE Europe conference in Prague, Czech Republic, last week.

Marking 50 years since the invention of the laser, the workshop was intended to open debate among senior figures from planned pan-European petawatt laser facilties (1015 W and beyond). Among the "blue-ribbon" initiatives under discussion were projects like HiPER (the High Power Laser Energy Research project), ELI (the Extreme Light Infrastructure), and the European X-Ray Laser project (XFEL).

"International infrastructures attract the best research scientists," Christian Kurrer, research programme officer at the European Commission, told delegates. "The infrastructures are well beyond the man-power and financial resources on a national level. This is why we need more collaborative efforts."

With access to unprecedented laser power and scientific expertise, it is easy to see why large-scale science facilities are attractive to users. In fact, some might argue that they are too good and that they will pull in users (and resources) simply because they can guarantee results where smaller national institutions can't. "Industries want facilities for reproducible, reliable results and 100% service," was the opinion of Mike Dunne, HiPER project director.

At the same time, workshop participants agreed that there's plenty of work to do to ensure that stakeholders in research and industry are in position to maximize their interactions with "big science". "They [the laser facilities] have the scientific experts and we bring the industrial methods where the networks can really make a difference," said Federico Canova of Amplitude Technologies, a French laser manufacturer.

New European Union member states might also question the economic returns on their investment in big science, not least because the planned locations for all of these big laser facilities are in western Europe. Kurrer, however, prefers to view such challenges as opportunities. "While distribution [of projects] may never be good, the key will be to break down the borders. Europe is all about talking to each other and overcoming barriers."

Europe's new generation of high-energy laser facilities form part of an ambitious big-science roadmap coordinated by the European Strategy Forum on Research Infrastructures (ESFRI). The ESFRI roadmap covers capital and operational investments running to tens of billions of euros in strategic research areas like energy, environmental science and advanced materials.

Friday, October 10, 2008

Brilliantly bright light source is one step closer to reality

The European X-ray Laser Project (XFEL) will harness a high energy short-wave laser light that is one billion times more brilliant than most modern x-rays to provide immensely detailed images of molecules and atoms.

Scientists believe a greater understanding of atoms and molecules could be used to develop better drugs to treat diseases or more environmentally efficient technologies for cleansing chemical effluents including carbon dioxide from the atmosphere.

Scientists will be able to carry out a range of experiments that were previously impossible before. For instance, researchers will be able to film atoms as they undergo chemical reactions, or see molecules that were once too small for conventional technology, and analyze gas plasma, the stuff of which stars are made, in microscopic detail.

To see these images, electrons are shot down a 3.3 km long tube at very high speeds and are stimulated to emit x-ray light. These can analyze molecules and atoms in unprecedented detail because the x-ray light emitted is at extremely short wavelengths, between six and one tenth of a nanometer, which enables very high resolution images to be taken of microscopic surfaces.

Countries participating in the XFEL project include Denmark, France, Germany, Greece, Hungary, Italy, Poland, Russia, Slovakia, Spain, Sweden, Switzerland, China and the UK.

Saturday, May 03, 2008

Faster than a Speeding Bubble

X-ray scattering images (above) and corresponding 3D depictions (below) of nucleation events, or "bubbles," forming in the semiconductor Indium Antimonide in the first instances after being hit with a laser pulse.

What do melting chocolate and bubbles in a champagne glass have in common? Besides being treats one might sample at a sophisticated soiree, they are both handy examples of first-order phase transitions in which a material transforms from one phase to another—that is, atoms changing from an orderly arrangement into a more chaotic arrangement.

Now, in an experiment led by Aaron Lindenberg, an international collaboration of scientists has uncovered new clues about the first instants of that process. The results are published in the April 4 edition of Physical Review Letters.

"We did not at all expect to see what we saw," said Lindenberg, "although in the aftermath we can go back and realize perhaps we should have. What's amazing about the process is that it spans such a huge range of time scales."

The process of melting, or in the case of champagne, of bubbling, has long been of interest to scientists. Phase transitions take place in the tiniest fraction of a second. In the case of Indium Antimonide (InSb), a semiconductor used by scientists to study such processes, the first steps in melting take a few hundred femtoseconds, a quadrillionth of a second. But no one knew what happened after that.

In the current study, the group used a laser to excite the sample and then measured the structure of the disordered liquid using X-rays, a technique called "pump-probe." Critical to the experiment is timing the initial laser used to pump the sample with energy, and the X-ray beam used to probe the results, to within mere femtoseconds. The resulting diffuse pattern of scattered X-rays from the disordered sample is used to map out where the atoms are at a given instant. Subsequent repeats of the pumping and probing at different relative delays between the laser and X-ray beam enables the researchers to reconstruct how the material evolves over time.

Lindenberg and colleagues found that the structure of the disordered liquid was far different from what one would have expected. Tiny atomic-scale bubbles, called nucleation events, form first and seed the process, a unique transient state of matter in which large fluctuations dominate the response of the material.

The group captured the process on a timescale 100 times shorter than any other previous X-ray study. The results give scientists a deeper understanding of how disordered materials behave on short timescales, and could lead to improved materials processing techniques, such as electronics manufacturing.

The current study also represents the last scientific paper to come from SLAC's Sub-Picosecond Pulse Source (SPPS) collaboration, led by Jerry Hastings, which was undertaken to study very fast atomic scale processes using ultra short pulses of X-rays. The work at SPPS presages the science to come from SLAC's Linac Coherent Light Source (LCLS), now under construction, which will create coherent X-ray laser pulses that are even shorter.

"SPPS was a remarkable success," said SSRL Director Jo Stohr. "It was great to see prominent X-ray scientists from all over the world coming to SLAC to participate in this unique experiment. It is an indication of what is yet to come with LCLS."

Source: by Brad Plummer, SLAC Today

Monday, February 26, 2007

Counterpropagating light opens door to tabletop X-ray laser

A team of researchers at the University of Colorado at Boulder has developed a new technique to generate laser-like X-ray beams, removing a major obstacle in the decades-long quest to build a tabletop X-ray laser that could be used for biological and medical imaging.

A paper on the subject by Murnane and Kapteyn, CU-Boulder graduate students Xiaoshi Zhang, Amy Lytle, Tenio Popmintchev, Xibin Zhou and Senior Research Associate Oren Cohen of JILA was published in the online version of the journal Nature Physics on Feb. 25.

Source: University of Colorado at Boulder

Tuesday, November 14, 2006

Ultrafast, Intense Laser Captures Nanoscale Images

HAMBURG, Germany, Nov. 14, 2006 -- Using a single, extremely short and intense x-ray laser pulse, an international team of scientists have, for the first time, taken a high-resolution diffraction image of an object such as a protein before the intensity of the radiation destroyed the sample. The experiment was the first successful application of "flash diffractive imaging" and begins a new era in structural research.

The new method will be applicable to atomic-resolution imaging of complex biomolecules when even more powerful x-ray lasers, currently under construction, are available. The technique will allow scientists to gain insight into the fields of materials science, plasma physics, biology and medicine.

The scientists, part of an international collaboration led by Lawrence Livermore National Laboratory's (LLNL) Henry Chapman and Janos Hajdu of Uppsala University in Sweden, achieved the feat using the world's first soft x-ray free-electron laser, located at the FLASH facility at Deutsches Elektronen-Synchrotron (DESY) in Hamburg. Their work will appear on the cover of the December issue of the journal Nature Physics (12 November 2006 | doi:10.1038/nphys461).

The experiment suggests that in the near future, images from nanoparticles and even large individual macromolecules -- viruses or cells -- may be obtained using a single, ultrashort high-intensity laser pulse before the sample explodes and turns into a plasma. This means that scientists could better understand the structure of macromolecular proteins without crystallizing them, which is required in conventional x-ray structure analysis, and have the ability to rapidly study all classes of proteins.

(From Photonics.com)