Monday, June 29, 2009

Laser-created temporal lens could lead to movies of molecular processes

(PhysOrg.com) -- Finding a way to observe and record the behavior of matter at the molecular level has long been a holy grail among physicists. That ability could open the door to a wide range of applications in ultrafast electron microscopy used in a large array of scientific, medical and technological fields.

Now, a team at the University of Nebraska-Lincoln has figured out a possible way to do that. Working in collaboration with Nobel laureate Ahmed Zewail (chemistry, 1999) of the California Institute of Technology in Pasadena, they developed mathematical models to show that laser beams create ultra-high-speed "temporal lenses" that would be capable of making "movies" of molecular processes. The finding was published in the June 15-19 online edition of the Proceedings of the National Academy of Sciences.

The "lenses" in question are not made of glass like those found in standard tabletop microscopes. They're created by laser beams that would keep pulses of electrons from dispersing and instead focus the electron packets on a target. The timescales required, however, are hardly imaginable on a human scale -- measured in femtoseconds (quadrillionths of a second) and attoseconds (quintillionths of a second).

The physicists modeled two types of lenses. One was a temporal "thin" lens created using one laser beam that could compress electron pulses to less than 10 femtoseconds. The second was a "thick" lens created using two counterpropagating laser beams that showed the potential of compressing electron pulses to reach focuses of attosecond duration.

No comments: