
The team at Osaka took another approach, they use both lasers and white light. They first fire a laser at an object, say an apple, to create an interference pattern, but instead of just one laser color, they actually use three; red, green and blue. The interference pattern is then captured on a light sensitive material which is coated with silver (because it contains electrons that are easily excited by white light) and silicon dioxide (to help steer the waves). They then shine a steady white light on the metal sheathed material exciting the free electrons, causing the creation of surface plasmons, which results in the regeneration of the captured image as a true-color 3-D hologram; one that can be viewed from almost any angle and is the same colors as the original object.
Currently, the technique has only been shown to work on still images, and the results displayed on a very small surface area (about as big as a baseball card), but the results of research is nonetheless a very big step towards creating not just more realistic holograms, but true animated 3-D technology.
More information: "Surface-Plasmon Holography with White-Light Illumination," by M. Ozaki et al., Science 8 April 2011: Vol. 332 no. 6026 pp. 218-220. DOI: 10.1126/science.1201045